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Stochastic lattice gas model for a predator-prey system
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We propose a stochastic lattice gas model to describe the dynamics of two animal species popu-
lations, one being a predator and the other a prey. This model comprehends the mechanisms of the
Lotka-Volterra model. Our analysis was performed by using a dynamical mean-field approximation
and computer simulations. Our results show that the system exhibits an oscillatory behavior of the
population densities of prey and predators. For the sets of parameters used in our computer sim-
ulations, these oscillations occur at a local level. Mean-field results predict synchronized collective

oscillations.

PACS number(s): 02.50.Ga, 05.70.Ln

I. INTRODUCTION

The dynamics of interacting species has deserved re-
newed interest since a simple mathematical model had
been proposed independently by Lotka [1] and Volterra
[2]. The Lotka-Volterra model predicts an oscillatory
temporal evolution of a predator-prey system and has
been widely used as a jumping-off place for models of
many organism societies [3-5]. However, some of its ap-
pealingly simple assumptions fail in taking into account
relevant features of such systems. For instance, an indi-
vidual is generally affected by its local environment and
not by the global density of each species. The importance
of space, considered as a limiting resource which would
enhance competitive coexistence, has also been pointed
out [6]. It is in this context that lattice gas versions of
the model caught recently renewed attention [7-10] as
a suitable way to address these questions and simulate
practical examples.

We propose a model consisting of a system of two types
of interacting particles residing in the sites of a lattice.
One type of particle represents a prey and the other a
predator. Each site can be either empty (0), occupied by
one prey (X), or occupied by one predator (Y'). The sys-
tem evolves in time according to a stochastic irreversible
dynamics with local interactions similar to those occur-
ring in contact process models [11-13] and also in lattice
gas models describing chemical reactions [14,15]. The
local interactions considered are the following: preda-
tors can be spontaneously annihilated, Y — 0; prey can
be autocatalytically created, 0 + nX — (n +1)X; and
predators can also be autocatalytically created at the
expense of prey, X + nY — (n + 1)Y. In this stochastic
treatment of the system, with local evolution rules, fluc-
tuations inherent to a many-body irreversible interacting
system are taken into account from a microscopic point
of view.
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We have analyzed the states of the system as a func-
tion of the creation rates of prey and predators and of
the death rate of predators considering square lattices
and one dimensional lattices. Our computer simulation
and mean-field analysis indicate that the system can ex-
hibit four kinds of states: two absorbing states, one being
a prey-absorbing state and the other a vacuum-absorbing
state; and two active states, one presenting an oscillatory
behavior in the population densities and the other char-
acterized by constant stationary population densities.

The layout of the paper is as follows. We start in Sec. II
by defining the model and setting up its master equation.
In Sec. ITII we use mean-field approximations to solve the
system of equations associated with the master equation.
There is a qualitative description of the different types
of solutions that we have found for the one-site and the
pair approximations. Section IV describes how computer
simulations were performed and the results that we ob-
tained. A summary and concluding remarks are stated
in Sec. V.

Finally, let us make a short digression on terminology.
In this work we use many times the terms “prey” and
“predator”. Even though inspired in mathematical ecol-
ogy, they are only generic names. Actually, words like
“hosts” or “healthy cells” and “parasites” or “infected
cells” may be more accurate to mimic a biological pro-

cess. Or we may simply call them particles of type A and
B.

II. MODEL

Consider a lattice of N sites which can be either empty,
occupied by a prey, or occupied by a predator. At each
time step a site is randomly chosen. For that site, we
denote by n, (n) the number of nearest neighbors oc-
cupied by prey (predators) and by ( the total number of
nearest neighbors. Within this model three cases need to
be considered

(a) The site is empty and it becomes either occupied
with a prey with a probability p,n,/¢ or else it remains
empty with probability 1 — p,n./¢.
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(b) The site is occupied by a prey, which is either re-
placed by a predator with a probability pyns/¢ or else
remains as a prey with probability 1 — ppns/(.

(c) The site is occupied by a predator, which is either
vacated with a probability p. or else remains as a preda-
tor with probability 1 — p..

The Markovian process defined above involves three
parameters p,, pp, and p., which are associated with
three subprocesses. Subprocess (a) describes the birth of
prey, subprocess (b) the death of prey and simultaneous
birth of predators, and subprocess (c) the spontaneous
death of predators.

The state of the system is represented by
o = (01,02,...,0N), Where o; = 0,1, or 2 according to
whether the site ¢ is empty, occupied by a prey, or occu-
pied by a predator.

Let P(o,t) be the probability of state o at time t and
let w;(o)/T be the probability per unit time of a cyclic
permutation of variable o;. That is, if 0; = 0,1, or 2,
then w; is the transition probability to o; = 1,2, or 0,
respectively. The evolution of P(o,t) is governed by the
master equation,

N
T%P(G’,t) = Z{wi(ﬂi)P(0i7t) —wi(o)P(o,t)}, (1)

=1

where the state denoted by o' is obtained from state o
by an anticyclic permutation of the variable o;.

According to the local rules of the model, defined
above, we have

paczé‘(al+57 lf o = 0 (28,)
wi(o) = prZJ 0its,2) ifo; =1, (2b)
Pe if o; =2, (2¢)

where the summation is over the { nearest neighbor sites
and §(z,y) is the Kronecker delta.

By rescaling the time the process is found to be invari-
ant under the transformation p, — ap., p» — apsy, and
pe — apc, where a is a positive constant. Hence we re-
strict ourselves to a set of parameters such that they sat-
isfy the condition p, + pp + p. = 1. This is automatically
satisfied by writing p, = 1/2—p—c/2,pp = 1/2+p—c/2,
and p. = c. All the figures have been made in terms of
parameters p and c.

The average of the state function f(o) is defined by

(f(0)) =D f(o)P(o,1). ()

From Egs. (2) and the master equation (1), the time evo-
lution of (f(o))is

7)) = Z([f

where the state denoted by o is obtained from o by a
cyclic permutation of the variable o;.
Let us make the following definitions:

f(o)]wi(o)), (4)

Pi(a) = (6(di, @), (5a)
Pij(aB) = (§(0i, a)b(0;, B)), (5b)
Pz]k(a/B’Y) = <6(0’,‘, a)é(ajaﬁ)5(0k77)>’ (SC)

etc., where a, (3, and v can take any one of the values
0,1, or 2. Using Egs. (2) we may write the time evolution
equations for some of these probabilities as

d 1
Ta‘t'P,(l) = paz Z Pi,,:+5(01)
5
1
“Pog Z P;i5(12), (6a)
5
d 1
TEPi(Z) = sz Z P;i+5(21) — pP;(2), (6b)
s
d
TEP”-(OI) PaC Z P, 11(101 + P, (01)]
(z+§¢1)
Z [PaPij,j+5(010) — pp P;j j 4+5(012)]
(G+5%0)
+pcP1.] (21)1 (GC)
d
Tdtpz] 12 Z [pa i+4, 11(102) pbPi+5.ij(212)]
(1+5¢J)
+pr > Pyies(112)
(j+80)
(pb ! +pc) P;(12), (6)

d 1
Tapij(oz) = p.Pi;(22) — Paz 25: P;5,:;(102)
(i+6+#7)

C > PoPijj+5(012) — pePi;(02).
(J+f§¢1

(6e)

These expressions constitute a hierarchic system of
equations. The time evolution of the one-site correlations
P;(a) involve the two-site correlations P;;(af), the time
evolution of the two-site correlations involve the three-
site correlations Pjjr(afB7), and so on. A truncation of
this hierarchic system, which we consider in the next sec-
tion, is the starting point for obtaining approximate so-
lutions to the problem.

III. TRUNCATION APPROXIMATION

In order to obtain approximate solutions of Egs. (6) we
use a truncation scheme [16-19]. The simplest truncation
scheme is obtained by writing the probability of a cluster
of sites as the product of the probability of each site. A
truncation of higher order, that is, of order n > 1, con-
sists in writing any correlation in terms of correlations
of order n and less than n. Consider a cluster of m > n



49 STOCHASTIC LATTICE GAS MODEL FOR A PREDATOR-PREY ...

sites and denote it by C. Let A and B be the sets of
points in the “core” and “boundary” of cluster C, re-
spectively. The core A is chosen to have n — 1 sites. The
conditional probability P(B|A) is approximated by the
product [[;cp P(i|A). Therefore the probability P(C) of
cluster C is given by

P(C) = P(A)P(B|A)~ P(4) [ P(:l4)
i€EB
P(i, A)
) VG
where P(i, A) is the probability of the cluster of n sites

formed by site ¢ and the sites of A.

A. One-site approximation (n = 1)

In this approximation one obtains a closed set of equa-
tions for the one-site correlation P;(a). This is ac-
complished by writing any two-site correlations P;;(a/)
as the product P;(a)P;(B). Three one-site correlations
are present, P;(0), P;(1), and P;(2), but only two can
be independent. We choose P;(1) and P;(2) so that

P;(0) = 1 — P;(1) — P;(2). The time evolution of these
variables are then

P(l

O)ZPz+s Pe=Pi(1) Y Pis(2),
s

(8a)

T%Pg(Z) = pb%Pi(Z) 26: P,‘_H;(l) - pCP,;(z). (Sb)

Since we seek for homogeneous solutions we write
P;(1) = z, P;(2) = y, and P;(0) = 1 — z — y. Equa-
tions (6) become

d
T 5% = Pa(l =z —y)z — ppay, (9a)
4 = poay — (9b)
T Y = PoTY — Pey-

These equations admit two trivial fixed points (z,y) =
(1,0) and (z,y) = (0,0), which correspond to the prey-
absorbing and vacuum-absorbing states, respectively.
The linear stability analysis reveals that the latter is al-
ways unstable and the former is stable in region I of the
phase diagram (Fig. 1). Below the critical line, defined
by ¢ = (2p + 1)/3, this point becomes unstable giving rise
to a nontrivial stable fixed point for which 0 < z < 1
and 0 < y < 1, namely, an active state. Two regions
can be distinguished according to the way the nontrivial
fixed point is approached. In region II, the fixed point is
an asymptotically stable node (real eigenvalues) whereas
in region III it is an asymptotically stable focus (com-
plex eigenvalues). This implies the emergence of damped
oscillations in the population densities of the system.
The line that separates regions II and III is given by
PaPe = 4ps(Py — pc), Where pq, pp, and p. are defined in
terms of p and ¢ in Sec. II.
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FIG. 1. Phase diagram in the c-p plane according to the
one-site approximation. Region I represents prey-absorbing
states. In region II active states are asymptotically stable
nodes and in region III active states are asymptotically stable
focuses.

B. Pair approximation (n = 2)

This approximation consists in writing the three-site
correlations in terms of two-site and one-site correlations.
In this case equation (7) leads to the following expression
for the probability of a cluster of three sites:

Pij(aB)Pix(B7)
P;(B) ’

where sites 7 and k are nearest neighbors of site j.

We also seek for spatially homogeneous and isotropic
solutions of Egs. (6). In this case we may drop the in-
dices in P;(a) and P;j(aB). We then have three one-site
correlations P(a), a = 0,1,2, and nine two-site correla-
tions P(af), o, = 0,1,2. However, only five of them
are independent. We choose them to be P(1) = z , the
prey density, P(2) = y, the predator density, P(01) = u,
P(12) = v, and P(02) = w. The equations for these
variables are

Pijr(apy) = (10)

T 5% = Patl — Py, (11a)
d v — (11b)
dty Pb DcY,

d ((-1) qu — u? uv 1
Tau = ¢ Pa P Pb; + PV — Pa Cua
(11¢)

— — 22
ngiv (¢ 7 1) ( — +p rv z 2 ) —Pb%v—Pc’U»
(11d)

a’u:zﬂ) + Pc (s—’U)), (lle)
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where z = P(0) =1-z -y, ¢ = P(00) = z — u — w,
r=P(ll)=z—u—v,and s=P(22) =y —v — w.

We have obtained analytically the stationary solutions
of the system of equations (11). Due to their somewhat
lengthy expressions, we thought it more convenient to
make a qualitative discussion here. Their explicit depen-
dence on the parameters p and c for a general ( is given
in the Appendix.

For the case ( = 2, the system admits only one sta-
tionary solution, which is the prey-absorbing state.

We have analyzed these equations for ( = 4. They have
two trivial fixed points: (z,y,z,u,v,w) = (1,0,0,0,0)
and (z,y,z,u,v,w) = (0,0,0,0,0) that correspond to
the prey-absorbing and vacuum-absorbing states, respec-
tively. The linear stability analysis reveals that the for-
mer becomes unstable in a line of critical points which
corresponds to the curve separating regions I and II in
Fig. 2. The region where the prey-absorbing state is sta-
ble is denoted by I. Below this critical line, the system of
equations displays a nontrivial fixed point, namely, a sta-
tionary solution, with 0 < z < 1and 0 < y < 1. Figure 3
shows the densities of prey, predators, and empty sites as
a function of ¢ for the case p = 0. As c decreases three
types of fixed points are obtained, which correspond to
regions II, III, and IV of Fig. 2. Regions II and III differ
in the way the stable fixed point is approached. Region
II has an asymptotically stable node whereas region III
shows an asymptotically stable focus. At the transition
line, fixed points are asymptotically one-tangent stable
focuses. This is due to the emergence of complex eigen-
values associated with the dominant eigenvector and im-
plies the emergence of damped oscillations in the popu-
lation densities of the system.

For sufficiently small values of ¢ a Hopf bifurcation
takes place at a critical line. Inside region IV limit cy-
cles are present as shown in Fig. 4. These results can
also be seen in Fig. 5, where the real component vy and

.

[

05 0 ! 05

FIG. 2. Phase diagram in the c-p plane according to
the pair approximation. Region I represents prey-absorbing
states. In region II active states are asymptotically stable
nodes and in region III active states are asymptotically stable
focuses. Region IV corresponds to limit cycle solutions.
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FIG. 3. Population densities of prey, predators, and empty
sites according to the pair approximation as c varies for p = 0.

the squared imaginary component w? of the dominant
eigenvalue associated to the focus are plotted against c
for p = 0. We also observe the behavior w ~ /c for
sufficiently small values of c .

IV. SIMULATION

Numerical simulations were performed in square lat-
tices with periodic boundary conditions. Unless another
size is specified, all the figures in this section correspond
to simulations in lattices of 100 x 100 sites. Each run
started with an initial configuration of prey, predators
and empty sites placed randomly in the lattice.

Simulation results are summarized in the phase dia-
gram of Fig. 6. Region I represents prey-absorbing states.
Increasing the predator survival probability (decreasing
¢), the system undergoes a second order kinetic phase
transition towards active stationary states that are rep-
resented by region II in the phase diagram; see Fig. 7.
These states are characterized by short transients of less

predator density

0.00 0.10 0.20

prey density

FIG. 4. A typical limit cycle. In this case p = 0 and
¢ = 0.017. Curves were plotted by iterating the pair ap-
proximation equations for two different initial conditions A
and B. Both trajectories are counterclockwise oriented.



49 STOCHASTIC LATTICE GAS MODEL FOR A PREDATOR-PREY ... 5077

0.00

-0.06

-0.09

0.0 0.1 0.2
[}

than 1000 Monte Carlo steps (MCS). An active state in
the phase diagram means that the lifetime of the system
is much longer than 30000 MCS. The states in region II
have a constant mean value of the population densities
and our analysis does not indicate any oscillatory behav-
ior in this region. This behavior can also be seen from
the graph of the spectral density S(w) of their temporal
evolution, shown in Fig. 8. Spectral densities were ob-
tained using the Fourier transform of temporal samples

(20]
1 /| & :
S(w;) = ﬁ< 3 F(n) exp (iw;n) > (12)
w; = E(L]VT_I_)_, J= 1L,N,

!Vc

FIG. 6. Phase diagram in the c-p plane obtained from sim-
ulations for a square lattice of L = 100. Region I represents
prey-absorbing states, region II nonoscillant active states, and
region III oscillant active states. Region IV consists of vac-
uum-absorbing states. In the grey region no reliable infor-
mation can be drawn due to the strong initial configuration
dependence.

FIG. 5. Real component y and squared
imaginary component w? of the dominant
eigenvalue associated with the focus of the
pair approximation equations , p = 0, while
¢ varies through regions II, III, and IV.

where f(n) denotes the stationary population density at
time n. To avoid a divergence in S(w) at w = 0 we
subtracted from each temporal sample its mean value,
thus obtaining a zero average process. Spectral densities
in Figs. 8 and 9 were smoothed by an averaging process
over nearest neighbors.

As c is decreased for a fixed value of p, a transition
takes place from region II to region III, consisting in the
emergence of temporal oscillations in the population den-
sities of the system. The oscillatory behavior is corrob-
orated by the clear maximum in the spectral density, as
seen in Fig. 9. The degree of oscillation is measured by
the eight of the maximum value of the spectral density
S(Wmax). We define a transition point as that in which
the low modes of the spectral density [lim,,—,o S(w)] be-
come as relevant (have the same value) as its maximum
S(Wmax). The transition line between regions II and III
was determined following this criterion. Increasing ¢ in
region II we get closer to the second order kinetic phase
transition (KPT). As a consequence, long range fluctu-
ations become highly relevant and predominance of the
low modes is to be expected. For this reason, care should
be taken about the reliability of the right end of this line

08

06

Density

04

02 r

0.0
0.0

03

[o]

FIG. 7. Population densities of prey, predators, and empty
sites according to simulations as ¢ varies for p = 0.
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FIG. 8. (a) Temporal evolution of the population densities
of prey and predators for p = 0 and ¢ = 0.1795 (region II).
(b) Spectral density of the prey population density (similar
graphs are obtained for predators and empty sites).

(where regions I, I, and ITI meet in Fig. 6). Since the line
is so close to the second order KPT, low modes become
important before S(wmax) suffers a significant decrease,
leading to an overlap in S.

Simulation results indicate that oscillations become
more evident as ¢ decreases, i.e., the maximum of S(w)
increases as ¢ — 0. Also wpax decreases in this limit,
for p = 0 and ¢ € 1: Wmax ~ ¢® with 8 < 1. This
behavior is in good qualitative agreement with the pair
approximation predictions.

Increasing ¢, wpmax also grows, reaching a limit value
until the oscillation disappears. For p = 0 this value
corresponds to a period of ~ 250 MCS.

Region IV in Fig. 6 represents vacuum-absorbing
states. Using lattices up to 480 x 480 the vacuum-
absorbing region reduces its height with the lattice size

(a)

AW WA

°91040 o 23155 24375
time(MCS)

(b)

S(w) / N
; \
20 ’ \‘
/ k\¥
0 0.605 0.01 0.015 0.02 0.025 0.03

w

FIG. 9. (a) Temporal evolution of the population densities
of prey and predators for p = 0 and ¢ = 0.022 (region III).
(b) Spectral density of the prey population density (similar
graphs are obtained for predators and empty sites).

of the system. This is in agreement with the pair-
approximation predictions that the vacuum-absorbing
state occurs only when ¢ = 0. But it still remains to
be studied the behavior of this region as L — oo, in
particular for the case p > 0 (where p, < p).

In regions I-IV, the system evolves towards an active
or absorbing state independently of the initial densities
of prey and predators. This is not the case for the pa-
rameter set of the grey region in Fig. 6. In this region,
depending on the initial densities, the system will reach
an oscillating state or will become trapped in either of its
two absorbing states. In the last case, the time it takes
for the system to become trapped is much less than the
transient of any simulation resulting in an active state. A
possible way to treat both this and the finite size problem
(previous paragraph) is mentioned in Sec. V.

In order to analyze, from the simulations, whether the
system presents oscillatory synchronized collective states
or if the oscillations occur at a local level, we studied the
standard deviation of the temporal samples

o=+ ((p—(p)?). (13)

For sets of values of the parameters p and c inside re-
gion III, we have verified that increasing the lattice size
L of the system o decays as 1/\/N, where N = L? is the
number of sites in the lattice. However, it still remains
to be seen what happens for values of ¢ < 1. In the hy-
pothetical case that o tends to a finite value as N — oo,
the system should display synchronized collective oscilla-
tory states which should correspond to the region IV in
Fig. 2, as found in the pair approximation analysis.

V. CONCLUSIONS

We have studied the dynamics of two competing
species from a stochastic point of view developed by us-
ing a lattice gas model. A regular square lattice was con-
sidered where each site can be empty, occupied by one
prey, or occupied by one predator. The system evolves in
time according to irreversible stochastic local rules. The
system presents two absorbing states: a prey-absorbing
state and a vacuum-absorbing state. We have found, by
means of a mean field approximation and by computer
simulations, that the system also presents active states
where prey and predators are continuously being created
and annihilated. These states can be of two types: a
stationary one and another where populations of the two
species oscillate in time. Mean-field results present two
kinds of oscillating states: one in which oscillations are
damped and another consisting of a stable limit cycle of
these quantities. The transition from one to the other
takes place through a Hopf bifurcation.

Computer simulations also exhibit a prey-absorbing
state, an active state with stationary populations, and
another active state which exhibits oscillations in the
population densities. These results are in qualitative
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agreement with mean-field predictions. In the two
regimes where the probability of spontaneous death of
a predator and prey reproduction are very small, simula-
tions are difficult because the system eventually becomes
trapped into either the prey-absorbing or the vacuum-
absorbing state, even for large systems. This problem
could be overcome by using another procedure in which
absorbing states are avoided modifying the model in or-
der to include a small probability of spontaneous prey
creation (of order 1/N). Another alternative could be
to protect the very last individual of each specie against
extinction, avoiding completely the two absorbing states.
We are still testing these procedures.

In the region where simulations are conclusive we have
observed that oscillations occur at a local level reveal-
ing that the oscillatory behavior displayed by real prey-
predator systems might be a local phenomenon. By this
we mean that there is a finite correlation length A\. How-
ever, we do not discard the possibility of having synchro-
nized collective oscillations in the system (A — oc0) in the
limit where the predator death probability is very small.
This speculation is based on the fact that mean-field re-
sults indicate that a limit cycle is stable in this regime.
This analysis will be object of a future work.
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APPENDIX

As mentioned in Sec. III B we will write the stationary
solutions of the Egs. (11). Defining the auxiliary func-

tions
a6
- ()
B=1+2,
P2y
=59,
a=i(3—\/m),

A=(B-1)(B+1),
B=(y+a&)(B+1)+(8-1)(a+a)+ 206,
C = (v+a)(a+a)+2Ba,

the solutions are

m=(1+%ﬁ+a+d_21(tﬁ+l)a) : (A1)
y= 2za, (A2)
u = :u, (A3)
v= %m, (A4)
w=(fr-a)(l-z-y) (A5)
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FIG. 4. A typical limit cycle. In this case p = 0 and
¢ = 0.017. Curves were plotted by iterating the pair ap-
proximation equations for two different initial conditions A
and B. Both trajectories are counterclockwise oriented.



